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PREFACE

Excerpts from the Preface  to the First Edition

There seems to be no general agreement as to what should constitute  a first course in
calculus  and analytic geometry. Some people insist that the only way to really understand
calculus  is to start off with a thorough treatment of the real-number system and develop
the subject step by step in a logical and rigorous fashion. Others argue that calculus  is
primarily a tool for engineers and physicists; they believe the course should stress applica-
tions of the calculus  by appeal to intuition and by extensive drill on problems which develop
manipulative skills. There is much  that is sound in both these points of view. Calculus is
a deductive science and a branch  of pure mathematics. At the same  time, it is very  impor-
tant to remember that calculus  has strong roots in physical problems and that it derives
much  of its power and beauty from the variety of its applications. It is possible to combine
a strong theoretical development with sound training in technique; this book represents
an attempt to strike a sensible balance between the two. While treating the calculus  as a
deductive science, the book does  not neglect applications to physical problems. Proofs of
a11  the important theorems are presented as an essential part of the growth of mathematical
ideas; the proofs are often preceded by a geometric or intuitive discussion to give the
student some insight into why they take a particular form. Although these intuitive dis-
cussions Will satisfy readers who are not interested in detailed proofs, the complete  proofs
are also  included for those who prefer a more rigorous presentation.

The approach in this book has been suggested by the historical and philosophical develop-
ment of calculus  and analytic geometry. For example, integration is treated before
differentiation.  Although to some this may  seem unusual, it is historically correct and
pedagogically sound. Moreover, it is the best way to make meaningful the true connection
between the integral and the derivative.

The concept of the integral is defined first for step functions. Since  the integral of a step
function  is merely a finite  sum, integration theory in this case is extremely simple. As the
student learns the properties of the integral for step functions,  he gains experience  in the
use of the summation notation and at the same  time becomes familiar with the notation
for integrals. This sets the stage SO that the transition from step functions  to more general
functions  seems easy and natural.
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. . .
WI Preface

Prefuce  to the Second Edition

The second edition differs from the first in many  respects. Linear algebra has been
incorporated, the mean-value theorems and routine applications of calculus  are introduced
at an earlier stage, and many new and easier exercises  have been added. A glance at the
table of contents reveals that the book has been divided into smaller chapters,  each  centering
on an important concept. Several sections have been rewritten and reorganized to provide
better motivation and to improve the flow of ideas.

As in the first edition, a historical introduction precedes  each  important new concept,
tracing its development from an early intuitive physical notion to its precise  mathematical
formulation. The student is told something of the struggles of the past and of the triumphs
of the men who contributed most to the subject. Thus the student becomes an active
participant in the evolution of ideas rather than a passive observer of results.

The second edition, like the first, is divided into two volumes. The first two thirds of
Volume 1 deals with the calculus  of functions  of one  variable, including infinite series  and
an introduction to differential equations. The last third of Volume 1 introduces linear
algebra with applications to geometry and analysis. Much  of this material leans heavily
on the calculus  for examples that illustrate the general theory. It provides a natural
blending of algebra and analysis and helps pave the way for the transition from one-
variable calculus  to multivariable calculus, discussed in Volume II. Further development
of linear algebra Will occur  as needed in the second edition of Volume II.

Once again 1 acknowledge with pleasure my debt to Professors H. F. Bohnenblust,
A. Erdélyi, F. B. Fuller, K. Hoffman, G. Springer, and H. S. Zuckerman. Their influence
on the first edition continued into the second. In preparing the second edition, 1 received
additional help from Professor Basil Gordon, who suggested many  improvements. Thanks
are also due George Springer and William P. Ziemer, who read the final draft. The staff
of the Blaisdell Publishing Company has, as always, been helpful; 1 appreciate their sym-
pathetic consideration of my wishes concerning format and typography.

Finally, it gives me special  pleasure to express my gratitude to my wife for the many ways
she has contributed during the preparation of both editions. In grateful acknowledgment
1 happily dedicate this book to her.

T. M. A.
Pasadena, California
September 16, 1966
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